

1

Course Profile -
SystemC

Course Profile
SystemC (SysC)

2

I. CONTENTS

1. Verification using SystemVerilog (VSV) ... 3

2. Class Details: .. 3

3. Trainers Profiles ... 3

Srinivasan Venkataramanan, CTO .. 3

Ajeetha Kumari, CEO & MD .. 4

4. Why CVC? .. 5

5. Our Global Footprint ... 5

6. Other Relevant Courses ... 7

7. Customer list (sub-set) ... 8

8. Course Content ... 8

About SystemC .. 9

Why SystemC? ... 9

SystemC TLM .. 10

SystemC Verification ... 10

Session 1: SystemC Basics .. 11

Session 2: Class & OOP ... 11

Session 3: Process & Design Activity ... 11

Session 4: SystemC Data Types, Statement & Flow control .. 12

Session 5: SystemC Function, Module & TLM ... 12

9. Registration... 13

10. Engagement Process .. 15

11. More Questions? .. 15

3

Course Profile
1. Verification using SystemVerilog (VSV)

CVC’s Verification Using SystemVerilog course gives you an in-depth
introduction to the main enhancements that SystemVerilog offers for testbench
development, discussing the benefits and issues with the new features. It also
demonstrates how verification is more efficiently and effectively done using
SystemVerilog constructs. The course explores in depth verification
enhancements such as object-oriented design, constraint random generation,
and functional coverage.

2. Class Details:

• Duration: 3-days full time (Can be extended up-to 5 days on need basis)

• Prerequisites: Attendees must be familiar with Verilog and ideally, but not
essentially, Verilog-2001. No prior knowledge of SystemVerilog is required. If
you have queries on these prerequisites, please contact CVC.

• Enrolling for a class: Please refer to Registration section.

3. Trainers Profiles

Srinivasan Venkataramanan, CTO

http://www.linkedin.com/in/svenka3

• Over 18+ years of experience in VLSI Design & Verification
• Designed, verified and lead several multi-million ASICs in image

processing, networking and communication domain
• Worked at Philips, Intel, and Synopsys in various capacities. Co-

authored leading books in the Verification domain.
• Presented papers, tutorials in various conferences, publications and

avenues.
• Conducted workshops and trainings on PSL, SVA, SV, VMM, E, ABV,

CDV and OOP for Verification
• Holds M.Tech in VLSI Design from prestigious IIT, Delhi.

4

Ajeetha Kumari, CEO & MD

http://www.linkedin.com/in/ajeetha

• Has 17+ years of experience in Verification
• Implemented, architected several verification environments for

block & subsystems
• Co-authored leading books in the Verification domain.
• Presented papers, tutorials in various conferences, publications and

avenues.
• Has worked with all leading edge simulators and formal verification

(Model Checking) tools.
• Conducted workshops and trainings on PSL, SVA, SV, OVM, E, ABV,

CDV and OOP for Verification
• Holds M.S.E.E. from prestigious IIT, Madras.

5

4. Why CVC?

CVC

XYZ training
company

EDA Vendor

Training Delivery World renowned
experts

Part timers, in
bet’n job
engineers

Tool support
Engineer

Focus Verification Language EDA tools
Topics covered User/Verification

perspective
Language
perspective

Based on the tools
strength

How Recently
Updated

Last week Months Back As old as language
was standardized

Verification
Expertise

Yes Depends on
the trainer

No

Can I run labs
across tools

Yes Yes No

Is Content Tool
independent

Yes No/Yes
(Typically
only one
tool)

No

Global Footprint Yes No Yes
Publications Yes No No
Post training
support

Yes No No

Online Technical
Evaluation

Yes No No

Customization Yes No No
Online Blogs Yes No No
Extended Hands
on

Yes No No

Code review Yes No No
Architecture
Review

Yes No No

Productivity Tools Yes No No
Cost Low <Unknown> Expensive

5. Our Global Footprint

Vendor

Factor

6

• Headquartered in Bangalore, India
• India

o Bangalore, Manipal, Cochin, Chennai
o Pune, Hyderabad
o Mumbai, Noida

• USA
o San Jose/Santa Clara
o Boston
o Austin

• Europe
o Poland
o Munich (partner)

• Asia-Pac
o Vietnam
o Singapore
o China
o Taiwan

• Middle East
o Turkey (partner, in the near future)

7

6. Other Relevant Courses
• Verification using SystemVerilog (VSV)
• UVM Level 1 (Basic)
• UVM Level 2 (Intermediate)
• UVM Level 3 (Expert)
• UVM RAL
• Art of Debugging with UVM
• ABV-UVM
• Go2UVM
• Graph Based Verification
• Formal Verification

8

7. Customer list (sub-set)

8. Course Content

9

About SystemC

 SystemC addresses the need for a system design and verification language that
spans hardware and software. It is a language built in standard C++ by
extending the language with the use of class libraries. The language is
particularly suited to model system's partitioning, to evaluate and verify the
assignment of blocks to either hardware or software implementations, and to
architect and measure the interactions between and among functional blocks.
Leading companies in the intellectual property (IP), electronic design
automation (EDA), semiconductor, electronic systems, and embedded software
industries currently use SystemC for architectural exploration, to deliver high-
performance hardware blocks at various levels of abstraction and to develop
virtual platforms for hardware/software co-design. SystemC was defined by the
Open SystemC Initiative (OSCI) and ratified as IEEE Std. 1666™-2011

Why SystemC?

 A typical system on a chip (SoC), consists of both silicon and embedded
software. Its design involves complex algorithm and architecture development
and analysis similar to that performed in system design – a trade-off process that
determines critical metrics, such as SOC performance, functionality, and power
consumption.

SystemC is a single, unified design and verification language that expresses
architectural and other system-level attributes in the form of open-source C++
classes. It enables design and verification at the system level, independent of
any detailed hardware and software implementation, as well as enabling co-
verification with RTL design. This higher level of abstraction enables considerably
faster, more productive architectural trade-off analysis, design, and redesign
than is possible at the more detailed RT level. Furthermore, verification of system
architecture and other system-level attributes is orders of magnitude faster than
that at the pin-accurate, timing-accurate RT level.

The SystemC community consists of a large and growing number of system
design companies, semiconductor companies, intellectual property providers,
and EDA tool vendors who have joined together to support and promote the
standard.

10

SystemC TLM

 In July 2012, transaction-level modeling (TLM) was integrated into SystemC. TLM
standard interfaces for SystemC provide an essential framework needed for
model exchange within companies and across the IP supply chain for
architecture analysis, software development and performance analysis, and
hardware verification. It explicitly addresses virtual prototyping in which SystemC
models can easily be exchanged and arranged within a system, enabling the
optimal reuse of models and modeling effort across different use cases

SystemC Verification

The SystemC Verification (SCV) library provides a common set of APIs that are
used as a basis to verification activities with SystemC (generation of values
under constraints, transaction recording, etc.). These APIs are implemented in all
major SystemC simulators available on the market.

http://accellera.org/community/systemc/about-systemc-tlm
http://accellera.org/activities/working-groups/systemc-verification

11

Agenda

Session 1: SystemC Basics
• Introduction

♦ Level of Abstraction.
♦ System level design flow.
♦ Why C++?
♦ Benefits of C/C++ based design flow.
♦ Why not just use C/C++? Drawback of C/C++ based design flow

• What is SystemC?
• Why SystemC for system design?
• How does it work?
• Benefits of SystemC – based design flow.
• What are the SystemC approaches?
• SystemC history
• SystemC environment
• SystemC objectives
• HDL based flow
• SystemC features
• SystemC design Flow:

♦ Developing SystemC – An Overview
♦ Model structure - system level
♦ Model structure – implementation level
♦ Basic system structure

• SystemC language Architecture

Session 2: Class & OOP
• Class & OOP: key features

o Encapsulation
o Inheritance
o Polymorphism

• Module
• Ports & signals
• Clocks

Session 3: Process & Design Activity
• Processes

12

• Waiting & watching
• Cycle –Accurate Simulation Scheduler
• Design Activities

♦ Modeling
• Module for “zigzag” computation

♦ Simulation
• Generation and run of an executable specification

♦ Debugging
• Techniques for checking the functionality of the system

Session 4: SystemC Data Types, Statement & Flow control

• SystemC supports all C++ data types. In addition SystemC provides
additional data types for describing hardware.

• Data types explain in two parts:
♦ C++ Data types
♦ SystemC data Types

• C++ Data types:
♦ Fundamental Data Types : Character types, Floating-point m

Types, Integer Types, Boolean Types, Void Type.
♦ Additional Data types: String Data Types, Enumerated data

Types, Typedef data Types.
• SystemC Int bit logic:

♦ Fixed-Precision, Arbitrary-Precision, Arbitrary Width Bit Vectors,
logic Types

• SystemC Operators:
♦ Arithmetic Operator, Increment Decrement Operator, Bitwise

Operator, Assignment Operator, Equality Operator
• SystemC statement and flow control:

♦ if-else, for-loop, while and do-while loop.
♦ jump statement break, continue, goto.

Session 5: SystemC Function, Module & TLM

• Functions, Void functions, function call as Expression, Functions
declaration

13

• Function argument passing
♦ Pass by value
♦ Pass by reference
♦ Const
♦ Default argument values

• Modules
• Introduction to TLM-2.0

♦ What is TLM?
♦ Why is TLM interesting?
♦ How is TLM being adopted?
♦ Transaction Level Modeling Key Concept.
♦ The architecture of TLM-2.0
♦ Coding guideline of TLM2.0.
♦ How to use in real environment

9. Registration

Send us the following details:

• Name, Email, Contact number of all attendees
• A coordinator name (In case of multiple attendees)
• Training module you are looking for
• Onsite or at CVC premises
• Tentative schedule – month & week (Indicate when your team is

available to attend the training)

You may email the details to training@cvcblr.comor

Visit Us: http://www.cvcblr.com or

Call Us: +91- 42134156, +91-9620209223

 +91-9620209223

https://www.linkedin.com/company/cvc-pvt-ltd

mailto:training@cvcblr.com
http://www.cvcblr.com/
https://www.linkedin.com/company/cvc-pvt-ltd

14

http://www.fb.com/cvc.uvm

http://www.twitter.com/cvcblr

http://www.fb.com/cvc.uvm
http://www.twitter.com/cvcblr

15

10. Engagement Process

11. More Questions?

Please contact us via email/phone: training@cvcblr.comCall Us: +91-
42134156, +91-9620209223

Package

Requirement
•Topic
•Duration
•Schedule
•No of attendees

Cutomization Logistics
(Venue)

Quote Valid for a
week

PO
Committed
from both

sides

Released
before the

training
Payment

terms

Delivery Training Book Labs Lab guide Certificate Feedback

Post
Training

Support Eval Conclusion

mailto:training@cvcblr.com

	CONTENTS
	1. Verification using SystemVerilog (VSV) 3
	2. Class Details: 3
	3. Trainers Profiles 3
	Srinivasan Venkataramanan, CTO 3
	Ajeetha Kumari, CEO & MD 4
	4. Why CVC? 5
	5. Our Global Footprint 5
	6. Other Relevant Courses 7
	7. Customer list (sub-set) 8
	8. Course Content 9
	About SystemC 9
	Why SystemC? 9
	SystemC TLM 10
	SystemC Verification 10
	Session 1: SystemC Basics 11
	Session 2: Class & OOP 11
	Session 3: Process & Design Activity 11
	Session 4: SystemC Data Types, Statement & Flow control 12
	Session 5: SystemC Function, Module & TLM 12
	9. Registration 13
	10. Engagement Process 15
	11. More Questions? 15
	Course Profile
	1. Verification using SystemVerilog (VSV)
	CVC’s Verification Using SystemVerilog course gives you an in-depth introduction to the main enhancements that SystemVerilog offers for testbench development, discussing the benefits and issues with the new features. It also demonstrates how verification is more efficiently and effectively done using SystemVerilog constructs. The course explores in depth verification enhancements such as object-oriented design, constraint random generation, and functional coverage.
	2. Class Details:
	 Duration: 3-days full time (Can be extended up-to 5 days on need basis)
	 Prerequisites: Attendees must be familiar with Verilog and ideally, but not essentially, Verilog-2001. No prior knowledge of SystemVerilog is required. If you have queries on these prerequisites, please contact CVC.
	 Enrolling for a class: Please refer to Registration section.
	3. Trainers Profiles
	Srinivasan Venkataramanan, CTO
	Ajeetha Kumari, CEO & MD

	http://www.linkedin.com/in/svenka3
	 Over 18+ years of experience in VLSI Design & Verification
	 Designed, verified and lead several multi-million ASICs in image processing, networking and communication domain
	 Worked at Philips, Intel, and Synopsys in various capacities. Co-authored leading books in the Verification domain.
	 Presented papers, tutorials in various conferences, publications and avenues.
	 Conducted workshops and trainings on PSL, SVA, SV, VMM, E, ABV, CDV and OOP for Verification
	 Holds M.Tech in VLSI Design from prestigious IIT, Delhi.
	http://www.linkedin.com/in/ajeetha
	 Has 17+ years of experience in Verification
	 Implemented, architected several verification environments for block & subsystems
	 Co-authored leading books in the Verification domain.
	 Presented papers, tutorials in various conferences, publications and avenues.
	 Has worked with all leading edge simulators and formal verification (Model Checking) tools.
	 Conducted workshops and trainings on PSL, SVA, SV, OVM, E, ABV, CDV and OOP for Verification
	 Holds M.S.E.E. from prestigious IIT, Madras.
	4. Why CVC?
	EDA Vendor
	XYZ training company
	CVC
	Tool support Engineer
	Part timers, in bet’n job engineers
	World renowned experts
	Training Delivery
	EDA tools
	Language
	Verification
	Focus
	Based on the tools strength
	Language perspective
	User/Verification perspective
	Topics covered
	As old as language was standardized
	Months Back
	Last week
	How Recently Updated
	No
	Depends on the trainer
	Yes
	Verification Expertise
	No
	Yes
	Yes
	Can I run labs across tools
	No
	Yes
	Is Content Tool independent
	Yes
	No
	Yes
	Global Footprint
	No
	No
	Yes
	Publications
	No
	No
	Yes
	Post training support
	No
	No
	Yes
	Online Technical Evaluation
	No
	No
	Yes
	Customization
	No
	No
	Yes
	Online Blogs
	No
	No
	Yes
	Extended Hands on
	No
	No
	Yes
	Code review
	No
	No
	Yes
	Architecture Review
	No
	No
	Yes
	Productivity Tools
	Expensive
	<Unknown>
	Low
	Cost
	5. Our Global Footprint
	 Headquartered in Bangalore, India
	 India
	o Bangalore, Manipal, Cochin, Chennai
	o Pune, Hyderabad
	o Mumbai, Noida
	 USA
	o San Jose/Santa Clara
	o Boston
	o Austin
	 Europe
	o Poland
	o Munich (partner)
	 Asia-Pac
	o Vietnam
	o Singapore
	o China
	o Taiwan
	 Middle East
	o Turkey (partner, in the near future)
	6. Other Relevant Courses
	 Verification using SystemVerilog (VSV)
	 UVM Level 1 (Basic)
	 UVM Level 2 (Intermediate)
	 UVM Level 3 (Expert)
	 UVM RAL
	 Art of Debugging with UVM
	 ABV-UVM
	 Go2UVM
	 Graph Based Verification
	 Formal Verification
	7. Customer list (sub-set)
	 /
	/ / //
	 / /
	 / / /
	 /
	/ /
	/ //
	8. Course Content
	About SystemC
	Why SystemC?
	SystemC TLM
	SystemC Verification
	Session 1: SystemC Basics
	Session 2: Class & OOP
	Session 3: Process & Design Activity
	Session 4: SystemC Data Types, Statement & Flow control
	Session 5: SystemC Function, Module & TLM

	 SystemC addresses the need for a system design and verification language that spans hardware and software. It is a language built in standard C++ by extending the language with the use of class libraries. The language is particularly suited to model system's partitioning, to evaluate and verify the assignment of blocks to either hardware or software implementations, and to architect and measure the interactions between and among functional blocks. Leading companies in the intellectual property (IP), electronic design automation (EDA), semiconductor, electronic systems, and embedded software industries currently use SystemC for architectural exploration, to deliver high-performance hardware blocks at various levels of abstraction and to develop virtual platforms for hardware/software co-design. SystemC was defined by the Open SystemC Initiative (OSCI) and ratified as IEEE Std. 1666™-2011
	 A typical system on a chip (SoC), consists of both silicon and embedded software. Its design involves complex algorithm and architecture development and analysis similar to that performed in system design – a trade-off process that determines critical metrics, such as SOC performance, functionality, and power consumption.
	SystemC is a single, unified design and verification language that expresses architectural and other system-level attributes in the form of open-source C++ classes. It enables design and verification at the system level, independent of any detailed hardware and software implementation, as well as enabling co-verification with RTL design. This higher level of abstraction enables considerably faster, more productive architectural trade-off analysis, design, and redesign than is possible at the more detailed RT level. Furthermore, verification of system architecture and other system-level attributes is orders of magnitude faster than that at the pin-accurate, timing-accurate RT level.
	The SystemC community consists of a large and growing number of system design companies, semiconductor companies, intellectual property providers, and EDA tool vendors who have joined together to support and promote the standard.
	 In July 2012, transaction-level modeling (TLM) was integrated into SystemC. TLM standard interfaces for SystemC provide an essential framework needed for model exchange within companies and across the IP supply chain for architecture analysis, software development and performance analysis, and hardware verification. It explicitly addresses virtual prototyping in which SystemC models can easily be exchanged and arranged within a system, enabling the optimal reuse of models and modeling effort across different use cases
	The SystemC Verification (SCV) library provides a common set of APIs that are used as a basis to verification activities with SystemC (generation of values under constraints, transaction recording, etc.). These APIs are implemented in all major SystemC simulators available on the market.
	Agenda
	 Introduction
	 Level of Abstraction.
	 System level design flow.
	 Why C++?
	 Benefits of C/C++ based design flow.
	 Why not just use C/C++? Drawback of C/C++ based design flow
	 What is SystemC?
	 Why SystemC for system design?
	 How does it work?
	 Benefits of SystemC – based design flow.
	 What are the SystemC approaches?
	 SystemC history
	 SystemC environment
	 SystemC objectives
	 HDL based flow
	 SystemC features
	 SystemC design Flow:
	 Developing SystemC – An Overview
	 Model structure - system level
	 Model structure – implementation level
	 Basic system structure
	 SystemC language Architecture
	 Class & OOP: key features
	o Encapsulation
	o Inheritance
	o Polymorphism
	 Module
	 Ports & signals
	 Clocks
	 Processes
	 Waiting & watching
	 Cycle –Accurate Simulation Scheduler
	 Design Activities
	 Modeling
	 Module for “zigzag” computation
	 Simulation
	 Generation and run of an executable specification
	 Debugging
	 Techniques for checking the functionality of the system
	 SystemC supports all C++ data types. In addition SystemC provides additional data types for describing hardware.
	 Data types explain in two parts:
	 C++ Data types
	 SystemC data Types
	 C++ Data types:
	 Fundamental Data Types : Character types, Floating-point m Types, Integer Types, Boolean Types, Void Type.
	 Additional Data types: String Data Types, Enumerated data Types, Typedef data Types.
	 SystemC Int bit logic:
	 Fixed-Precision, Arbitrary-Precision, Arbitrary Width Bit Vectors, logic Types
	 SystemC Operators:
	 Arithmetic Operator, Increment Decrement Operator, Bitwise Operator, Assignment Operator, Equality Operator
	 SystemC statement and flow control:
	 if-else, for-loop, while and do-while loop.
	 jump statement break, continue, goto.
	 Functions, Void functions, function call as Expression, Functions declaration
	 Function argument passing
	 Pass by value
	 Pass by reference
	 Const
	 Default argument values
	 Modules
	 Introduction to TLM-2.0
	 What is TLM?
	 Why is TLM interesting?
	 How is TLM being adopted?
	 Transaction Level Modeling Key Concept.
	 The architecture of TLM-2.0
	 Coding guideline of TLM2.0.
	 How to use in real environment
	9. Registration
	Send us the following details:
	 Name, Email, Contact number of all attendees
	 A coordinator name (In case of multiple attendees)
	 Training module you are looking for
	 Onsite or at CVC premises
	 Tentative schedule – month & week (Indicate when your team is available to attend the training)
	You may email the details to training@cvcblr.comor
	Visit Us: http://www.cvcblr.com or
	Call Us: +91- 42134156, +91-9620209223
	/ +91-9620209223
	/https://www.linkedin.com/company/cvc-pvt-ltd
	/http://www.fb.com/cvc.uvm
	/http://www.twitter.com/cvcblr
	10. Engagement Process
	/
	11. More Questions?
	Please contact us via email/phone: training@cvcblr.comCall Us: +91- 42134156, +91-9620209223

