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Course Profile 
1. Verification using SystemVerilog (VSV) 

CVC’s Verification Using SystemVerilog course gives you an in-depth 
introduction to the main enhancements that SystemVerilog offers for testbench 
development, discussing the benefits and issues with the new features. It also 
demonstrates how verification is more efficiently and effectively done using 
SystemVerilog constructs. The course explores in depth verification 
enhancements such as object-oriented design, constraint random generation, 
and functional coverage. 

2. Class Details: 

• Duration: 3-days full time (Can be extended up-to 5 days on need basis) 

• Prerequisites: Attendees must be familiar with Verilog and ideally, but not 
essentially, Verilog-2001. No prior knowledge of SystemVerilog is required. If 
you have queries on these prerequisites, please contact CVC. 

• Enrolling for a class: Please refer to Registration section.  

3. Trainers Profiles 

Srinivasan Venkataramanan, CTO 

http://www.linkedin.com/in/svenka3 

• Over 18+ years of experience in VLSI Design & Verification  
• Designed, verified and lead several multi-million ASICs in image 

processing, networking and communication domain  
• Worked at Philips, Intel, and Synopsys in various capacities. Co-

authored leading books in the Verification domain.  
• Presented papers, tutorials in various conferences, publications and 

avenues.  
• Conducted workshops and trainings on PSL, SVA, SV, VMM, E, ABV, 

CDV and OOP for Verification 
• Holds M.Tech in VLSI Design from prestigious IIT, Delhi.  
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Ajeetha Kumari, CEO & MD  

 

http://www.linkedin.com/in/ajeetha 

• Has 17+ years of experience in Verification  
• Implemented, architected several verification environments for 

block & subsystems  
• Co-authored leading books in the Verification domain.  
• Presented papers, tutorials in various conferences, publications and 

avenues.  
• Has worked with all leading edge simulators and formal verification 

(Model Checking) tools.  
• Conducted workshops and trainings on PSL, SVA, SV, OVM, E, ABV, 

CDV and OOP for Verification  
• Holds M.S.E.E. from prestigious IIT, Madras.  
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4. Why CVC? 
  

CVC 
 

XYZ training 
company 

 
EDA Vendor 

Training Delivery World renowned 
experts 

Part timers, in 
bet’n job 
engineers 

Tool support 
Engineer 

Focus Verification Language EDA tools 
Topics covered User/Verification 

perspective 
Language 
perspective 

Based on the tools 
strength 

How Recently 
Updated 

Last week Months Back As old as language 
was standardized 

Verification 
Expertise 

Yes Depends on 
the trainer 

No 

Can I run labs 
across tools 

Yes Yes No 

Is Content Tool 
independent 

Yes  No/Yes 
(Typically 
only one 
tool) 

No 

Global Footprint Yes No Yes 
Publications Yes No No 
Post training 
support 

Yes No No 

Online Technical 
Evaluation 

Yes No No 

Customization Yes No No 
Online Blogs Yes No No 
Extended Hands 
on 

Yes No No 

Code review Yes No No 
Architecture 
Review 

Yes No No 

Productivity Tools Yes No No 
Cost Low <Unknown> Expensive 

 

 

5. Our Global Footprint 

Vendor 

Factor 
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• Headquartered in Bangalore, India 
• India 

o Bangalore, Manipal, Cochin, Chennai 
o Pune, Hyderabad 
o Mumbai, Noida  

• USA 
o San Jose/Santa Clara 
o Boston 
o Austin 

• Europe 
o Poland 
o Munich (partner) 

• Asia-Pac 
o Vietnam 
o Singapore 
o China 
o Taiwan 

• Middle East 
o Turkey (partner, in the near future) 
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6. Other Relevant Courses 
• Verification using SystemVerilog (VSV) 
• UVM Level 1 (Basic) 
• UVM Level 2 (Intermediate) 
• UVM Level 3 (Expert) 
• UVM RAL     
• Art of Debugging with UVM 
• ABV-UVM  
• Go2UVM 
• Graph Based Verification  
• Formal Verification 
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7. Customer list (sub-set) 
 

 

       

   

         

      

       

    

       

  

 

 

 

 

 

8. Course Content 
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About SystemC 

 SystemC addresses the need for a system design and verification language that 
spans hardware and software. It is a language built in standard C++ by 
extending the language with the use of class libraries. The language is 
particularly suited to model system's partitioning, to evaluate and verify the 
assignment of blocks to either hardware or software implementations, and to 
architect and measure the interactions between and among functional blocks. 
Leading companies in the intellectual property (IP), electronic design 
automation (EDA), semiconductor, electronic systems, and embedded software 
industries currently use SystemC for architectural exploration, to deliver high-
performance hardware blocks at various levels of abstraction and to develop 
virtual platforms for hardware/software co-design. SystemC was defined by the 
Open SystemC Initiative (OSCI) and ratified as IEEE Std. 1666™-2011    

Why SystemC? 

 A typical system on a chip (SoC), consists of both silicon and embedded 
software. Its design involves complex algorithm and architecture development 
and analysis similar to that performed in system design – a trade-off process that 
determines critical metrics, such as SOC performance, functionality, and power 
consumption. 

SystemC is a single, unified design and verification language that expresses 
architectural and other system-level attributes in the form of open-source C++ 
classes. It enables design and verification at the system level, independent of 
any detailed hardware and software implementation, as well as enabling co-
verification with RTL design. This higher level of abstraction enables considerably 
faster, more productive architectural trade-off analysis, design, and redesign 
than is possible at the more detailed RT level. Furthermore, verification of system 
architecture and other system-level attributes is orders of magnitude faster than 
that at the pin-accurate, timing-accurate RT level. 

The SystemC community consists of a large and growing number of system 
design companies, semiconductor companies, intellectual property providers, 
and EDA tool vendors who have joined together to support and promote the 
standard. 
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SystemC TLM 

 In July 2012, transaction-level modeling (TLM) was integrated into SystemC. TLM 
standard interfaces for SystemC provide an essential framework needed for 
model exchange within companies and across the IP supply chain for 
architecture analysis, software development and performance analysis, and 
hardware verification. It explicitly addresses virtual prototyping in which SystemC 
models can easily be exchanged and arranged within a system, enabling the 
optimal reuse of models and modeling effort across different use cases 

SystemC Verification 

The SystemC Verification (SCV) library provides a common set of APIs that are 
used as a basis to verification activities with SystemC (generation of values 
under constraints, transaction recording, etc.). These APIs are implemented in all 
major SystemC simulators available on the market.  

http://accellera.org/community/systemc/about-systemc-tlm
http://accellera.org/activities/working-groups/systemc-verification


 

11 
 

Agenda 
 

Session 1: SystemC Basics 
• Introduction 

♦ Level of Abstraction. 
♦ System level design flow. 
♦ Why C++? 
♦ Benefits of C/C++ based design flow. 
♦ Why not just use C/C++? Drawback of C/C++ based design flow 

  
• What is SystemC? 
• Why SystemC for system design? 
• How does it work? 
• Benefits of SystemC – based design flow. 
• What are the SystemC approaches? 
• SystemC history 
• SystemC environment 
• SystemC objectives 
• HDL based flow  
• SystemC features 
• SystemC design Flow:  

♦ Developing SystemC – An Overview 
♦ Model structure - system level 
♦ Model structure – implementation level 
♦ Basic system structure 

• SystemC language Architecture 
 

Session 2: Class & OOP 
• Class & OOP: key features 

o Encapsulation 
o Inheritance 
o Polymorphism 

• Module 
• Ports & signals 
• Clocks 
 

Session 3: Process & Design Activity 
• Processes 
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• Waiting & watching 
• Cycle –Accurate Simulation Scheduler 
• Design Activities 

♦ Modeling 
• Module for “zigzag” computation 

♦ Simulation 
• Generation and run of an executable specification 

♦ Debugging 
• Techniques for checking the functionality of the system 

 
 

Session 4: SystemC Data Types, Statement & Flow control 
 

• SystemC supports all C++ data types. In addition SystemC provides 
additional data types for describing hardware.  

• Data types explain in two parts: 
♦ C++ Data types 
♦ SystemC data Types 

• C++ Data types: 
♦ Fundamental Data Types : Character types, Floating-point m 

Types, Integer Types, Boolean Types, Void Type. 
♦ Additional Data types: String Data Types, Enumerated data 

Types, Typedef data Types. 
• SystemC Int bit logic: 

♦ Fixed-Precision, Arbitrary-Precision, Arbitrary Width Bit Vectors, 
logic Types 

• SystemC Operators:  
♦ Arithmetic Operator, Increment Decrement Operator, Bitwise 

Operator, Assignment Operator, Equality Operator 
• SystemC statement and flow control: 

♦  if-else, for-loop, while and do-while loop. 
♦  jump statement break, continue, goto. 

 
 
 

 

Session 5: SystemC Function, Module & TLM 
 

• Functions, Void functions, function call as Expression,  Functions 
declaration 
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• Function argument passing 
♦ Pass by value  
♦ Pass by reference 
♦ Const 
♦ Default argument values 

• Modules 
• Introduction to TLM-2.0 

♦ What is TLM? 
♦ Why is TLM interesting? 
♦ How is TLM being adopted? 
♦ Transaction Level Modeling Key Concept. 
♦ The architecture of TLM-2.0 
♦ Coding guideline of TLM2.0. 
♦ How to use in real environment 

 

9. Registration 
 

Send us the following details: 

• Name, Email, Contact number of all attendees 
• A coordinator name (In case of multiple attendees) 
• Training module you are looking for 
• Onsite or at CVC premises 
• Tentative schedule – month & week (Indicate when your team is 

available to attend the training)  

You may email the details to training@cvcblr.comor 

Visit Us:  http://www.cvcblr.com   or 

Call Us: +91- 42134156, +91-9620209223  

 

          +91-9620209223 

https://www.linkedin.com/company/cvc-pvt-ltd 

mailto:training@cvcblr.com
http://www.cvcblr.com/
https://www.linkedin.com/company/cvc-pvt-ltd
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http://www.fb.com/cvc.uvm 

http://www.twitter.com/cvcblr 
 
  

http://www.fb.com/cvc.uvm
http://www.twitter.com/cvcblr
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10. Engagement Process 

 

11. More Questions? 

Please contact us via email/phone: training@cvcblr.comCall Us: +91- 
42134156, +91-9620209223 

Package 

Requirement
•Topic
•Duration
•Schedule
•No of attendees

Cutomization Logistics 
(Venue)

Quote Valid for a 
week

PO
Committed 
from both 

sides

Released 
before the 

training
Payment 

terms

Delivery Training Book Labs Lab guide Certificate Feedback

Post 
Training

Support Eval Conclusion

mailto:training@cvcblr.com
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